Inference for Low-Dimensional Covariates in a High-Dimensional Accelerated Failure Time Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates

We consider two regularization approaches, the LASSO and the threshold-gradient-directed regularization, for estimation and variable selection in the accelerated failure time model with multiple covariates based on Stute's weighted least squares method. The Stute estimator uses Kaplan-Meier weights to account for censoring in the least squares criterion. The weighted least squares objective fun...

متن کامل

Inference of Low-Dimensional Latent Structure in High-Dimensional Data

EE) Inference of Low-Dimensional Latent Structure in High-Dimensional Data

متن کامل

Bayesian Semiparametric Inference for the Accelerated Failure Time Model

Bayesian semi-parametric inference is considered for a log-linear model. This model consists of a parametric component for the regression coeecients and a nonparametric component for the unknown error distribution. Bayesian analysis is studied for the case of a parametric prior on the regression coeecients and a mixture-of-Dirichlet-processes prior on the unknown error distribution. A Markov ch...

متن کامل

Empirical likelihood inference for the accelerated failure time model

Accelerated failure time (AFT) models are useful regression tools to study the association between a survival time and covariates. Semiparametric inference procedures have been proposed in an extensive literature. Among them, Fygenson and Ritov (1994) proposed an estimating equation which is monotone in the regression parameter and has some excellent properties. However, there exists a serious ...

متن کامل

Testing covariates in high-dimensional regression

Abstract In a high-dimensional linear regressionmodel, we propose a new procedure for testing statistical significance of a subset of regression coefficients. Specifically, we employ the partial covariances between the response variable and the tested covariates to obtain a test statistic. The resulting test is applicable even if the predictor dimension is much larger than the sample size. Unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2019

ISSN: 1017-0405

DOI: 10.5705/ss.202016.0449